數學不好還學什么AI人工智慧?!
數學不好還學什么AI人工智慧?!別說笑了! 人工智慧與數學之間的關系可歸納為: 在AI領域工作的不懂數學的人就像一個不懂得說服的政治家。 兩者都有一個不可避免的區域可供使用。 現在,在你全部緊張起來之前,因為互聯網上的某個人只是告訴你你需要數學,放松一下。 你確實需要數學,但你不需要全部。 另外,我將在本文末尾告訴你秘訣。 但首先,你真的需要什么樣的數學? 線性代數:這是您絕對需要熟悉的數學的一部分。 即使你只想成為一名深度學習的實踐者,而不是研究者,你仍然需要線性代數。 為什么? 因為幾乎所有數據都將采用多維矩陣的形式。 您將使用代碼進行的許多魔術將要求您了解此類矩陣的操作。這絕對是你應該學習的東西。 微分學:如果你只是想在深度學習中創造一些有趣的項目,那么這個并不是絕對必要的。 但是,如果你想深入了解事情是如何運作的,或者你想進行一些研究,那么你需要在你的工具帶中使用這個工具。 統計:由于您將處理大量數據,并且您還需要操作,理解和可視化這些數據,因此您需要統計數據。 概率:如果你進入一些嚴肅的應用程序,那么你也需要概率,因為通過任何類型的深度學習,你將處理概率。 嚴重的應用,如自動駕駛汽車,人工智慧等將要求您使用概率模型。 但是對于一些輕量級深度學習,你不需要太多。 就數學而言,這幾乎就是深度學習所需要的。 如果你只是想玩深度學習并做一些輕量級項目來獲得樂趣,那么只要熟悉這些概念就可以了。 但是,如果你想進入完整的研究模式,那么你需要非常精通這些東西。 此外,您不需要成為數學向導來深入學習從業者。 您只需要學習線性代數和統計學,并熟悉一些微積分和概率。 現在,正如我所承諾的,秘密醬。 如果您感到被數學所嚇倒,這是您不進入深度學習或任何其他領域的唯一理由,那么這個秘訣就是為您服務。 秘訣就是:學習數學的唯一方法是做數學 - 保羅·哈爾莫斯。 如果你想更加了解人工智慧,或者說想實踐一下人工智慧項目,谷歌的另一款工具或許可以幫到你,也就是谷歌的AIY Projects項目。 AIY Vision Kit附帶的軟件運行三個基于TensorFlow的神經網絡。 其中一個基于谷歌的MobileNets平臺,能夠識別超過1,000個日常物品。 第二個可以在圖像中發現面部和表情。 最后一個是專門用于識別貓,狗和人的神經網